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Abstract. This article summarizes the plasma characteristics important for the Z-pinch research. 
It begins with the discussion of the most basic plasma properties related to collisionality and 
magnetization and then proceeds to more complex phenomena associated with magnetic field 
evolution in a highly dynamical plasma. Plasma transport properties are discussed mostly in 
conjunction with the MagLIF concept. Issues of interplay of the classical and anomalous 
transport in a plasma whose pressure is higher than the magnetic pressure are elucidated. 
Differences between the magnetic reconnection in a weakly and highly-collisional plasmas are 
discussed. Kinetic effects and the role of microturbulence are mentioned in conjunction with 
formation of high-energy tails in the particle distribution functions and generation of particle 
beams. Discussion is based on the order-of-magnitude estimates suitable for initial orientation in 
the problem. A set of numerical relations that can be used for quick estimates is presented in 
Appendix.  
 
1. INTRODUCTION 
 
 The plasmas of Z-pinches occupy a very large domain in a parameter space. Their 
common feature is a high plasma pressure p that can be much higher than the magnetic pressure 
pM; another important feature of these plasmas is that the magnetic field is entirely or almost 
entirely created by the currents flowing in the plasma itself, unlike the magnetic confinement 
systems - tokamaks, stellarators, or mirrors. Together, this creates an environment of incredibly 
dynamic, rapidly evolving systems, sometimes showing the trend to fractalization.  
 In a number of situations, this plasma is so dense that it is strongly collisional and can 
therefore be reasonably well described by the two-fluid model and, sometimes, even by an 
additionally reduced model of resistive single-fluid magnetohydrodynamic (MHD). However, 
even in these situations of an apparent strong collisionality, the rapidly evolving plasma of Z-
pinches is prone to the effects of magnetic reconnection and current disruptions that may trigger 
the processes of particle acceleration, both in the form of the particle beams and in the form of 
long quasi-isotropic “tails” of the distribution functions. In other cases, the whole plasma may 
become hot and weakly collisional. 
 This tutorial represents a theorist’s view on the most salient features of the Z-pinch 
plasmas. The author attempts to identify the dominant effects and the ways of their description 
most suitable for various specific settings. We start from very basic assessment of the simplest 
plasma characteristics of collisionality and magnetization and move on to describe more complex 
effects depending on these two basic characteristics. This tutorial will allow the reader to 
approximately locate the position of his/her plasma in a multi-dimensional parameter space and 
qualitatively identify effects that are of the most importance in this plasma. It will also present a 
concept of scalability and illustrate how the scaling relations between various laboratory 
experiments, as well as between the astrophysical and laboratory plasmas can be established.  
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 This tutorial does not cover techniques used to produce Z-pinches and some other 
configurations closely related to Z-pinches. Figure 1 is provided simply to illustrate the general 
shape of these objects (see also bibliographic references at the end of this section). The basic 
“classical”  Z-pinch is shown in Fig. 1a. The strong axial (”z”) current creates a compression 
force acting on the cylindrical liner. In the dynamical systems the current grows rapidly, and 
accelerates the liner towards the axis where it collapses, creating a very dense and hot object that 
quickly rebounds. There is also a different possibility, where the plasma is created in a 
quasistatic equilibrium, with the radial plasma pressure gradient balanced by the j ×B force (the 
so called “Bennett pinch”). Both configurations are unstable. In the equilibrium case the 
instability is related to the increase (decrease) of the azimuthal magnetic field in the zone of 
decreased (increased) radius of the current column. This factor affects stability of imploding 
plasmas as well, but in this latter case it is usually subdominant relative to to the Rayleigh-Taylor 
instability driven by the effective gravity force directed against the density gradient. As this 
acceleration-driven instability is caused by the magnetic forces, it is sometimes called “Magnetic 
Rayleigh-Taylor” instability (MRT).  
 Besides “canonical” pinch configuration shown in Fig. 1a there exist other configurations 
that share many pieces of the basic physics with the “canonical” one but look sometimes quite 
differently. In particular, the plasma focus (Fig. 1b) is characterized by the formation of a 
discharge channel (plasma shell) between two coaxial cylindrical electrodes early in the pulse; 
the force causes a gradual acceleration of this plasma along the annulus, curving of the 
shell, and its eventual implosion in a manner reminiscent of that sown in Fig. 1a.  
 Very high current densities can be reached in the x-pinches (Fig. 1c), where the discharge 
occurs in the X-shaped intersection of two or more thin wires (or in the neck of a specially 
machined conical conductors).  
 The mutual attraction of the currents that causes the pinch implosion in Fig. 1a occurs 
also if there is no axial symmetry in the current pattern. This is realized in the linear arrays of 
current-carrying wires.  
 It is impossible to cover enormous literature related to the Z-pinches and Z-pinch plasmas 
in this relatively compact tutorial – a complete list of references would be a few times longer 
than this whole article! So, the author has to be quite selective in this regard and has limited 
himself to a small sub-set of references. Still, the references cited in this article will allow the 
reader to orient himself/herself in the relevant issues and also find further references in the cited 
papers.  
 To guide those readers who are only interested in a quick orientation in te achievements 
in this research area, the author provides here an even smaller subset of references with brief 
explanations.  Summary of the early research on Z pinches can be found in Ref. 1. Broad reviews 
of Z pinches are presented in Refs. 2, 3. Applications of Z pinches as radiation sources are 
described in Ref. 4. A lot of information on the wire-array Z-pinches is provided in Ref. 5, 
whereas experiments on linear wire arrays are described in Ref. 6. The X-pinches are discussed 
in Ref. 7 and their use as point X-ray sources, in Ref. 8. Recent analyses of the plasma foci are 
presented in Ref. 9. Scaling relations between various experiments are provided in Ref. 10, 
whereas scaling relations between phenomena in distant astrophysical objects and laboratory 
plasmas, in Refs. 11, 12. The fusion applications include a MagLIF concept [13] that is based on 
a rapid adiabatic compression of a cylindrical plasma with a pre-imposed axial magnetic field, 
and Magnetized Target Fusion [MTF] approach (e.g., [14, 15]) that involves compression of the 
closed-field-line configuration (e.g., the Field-Reversed Configuration, FRC) by a somewhat 

j ×B
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slower implosions. We do not discuss the studies on the MHD stability of Z pinches – this would 
require at least one more tutorial. The representative references, aside from the reviews [2, 3], 
are Refs. [16, 17]. As a main source of information on plasma transport we use a fundamental 
review by S. I. Braginski [18]. As already mentioned, more references will be provided in the 
subsequent sections. 
 Throughout the paper we use CGS units. In “practical” numerical estimates mixed units 
are used, specified in each case.  
 
2. GENERAL CHARACTERIZATION OF THE Z-PINCH PLASMAS 
 
2.1 Collisionality 
 
 We start this section from presenting convenient estimates for the electron and ion mean-
free paths (mfp):  

 
λei (cm) ≈

2 ⋅1018 Te(keV )[ ]2

Zne(cm
−3)

; λii (cm) ≈
2 ⋅1018 Te(keV )[ ]2

Z 3ne(cm
−3)

 .     (1)
 

Here ne is the electron density, Te,i  are the particle temperatures, and Z is an average charge state 
of the ions. The estimates are based on equations presented in review [18]. One can note that the 
particle mean-free-path in a plasma depends on the particle energy, and an “exact” value of λ 
depends on the averaging procedure that is different for the evaluation of different transport 
coefficients, say, thermal conductivity and plasma resistivity. Therefore, Eq. (1) can be 
considered as a definition  of the mfp for the thermal particles. If the plasma is grossly non-
Maxwellian, the collisions depend on the position of the particle in question in the velocity space 
and have to be described by a full-blown collision operator [19]. The numerical factors in Eq. (1) 
are chosen so as to provide a sense of the scales determining such processes as the electron 
scattering on ions, or isotropization of the initially anisotropic ion distribution. The Coulomb 
logarithm is chosen to be about 10, a reasonable estimate for the Z-pinch plasmas. Equations (1) 
correspond to thermal particles; for the higher-energy tail of the distribution functions the mean-
free path scales as (E/T)2, where E>>T is an energy of the tail particle. A detailed review of 
collisions in plasmas can be found in Ref. [19].  
 Here and below we consider “simple” plasmas, with a single ion species of the atomic 
mass A and charge Z. For the DT plasma we take A=2.5, Z=1. For a partially ionized plasmas, 
one can approximately identify Z with the average ion charge. Due to the fact that the electron-
ion cross-section scales as Z2, and the ion density is equal to ne/Z, the electron-ion mean-free-
path contains parameter 1/Z when expressed in terms of the electron density The ion-ion 
collision cross-section scales as Z4 and, accordingly, the ion-ion m.f.p. scales as Z-3 at a given ne. 
At lower temperatures and higher densities one may enter a regime of a non-ideal plasma, where 
thermal particle energies would become smaller than the Coulomb interaction energies. This 
regime corresponds usually to an early stage of the discharge, where the melting and evaporation 
of the conductor begin [20].  We will not dwell on these issues.  
 The dimensionless parameter (“collisionality”) that would characterize the effect of 
collisions on the plasma transport over the scale L can be introduced as  

 Cole =
L
λei
; Coli =

L
λii

.        (2) 
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Note that we use an acronym Col with more than one letter (Col instead of C) in order not to 
confuse collisionality with the radial liner convergence C extensively used later in this article. 
Such notation also follows traditions of the dimensionless analysis, where the extended 
acronyms have been used for many decades (like Re instead of R for the Reynolds number). 
 The parameter directly related to the m.f.p. is the collision time τ e,i  that we define as the 
electron or ion m.f.p. divided by the thermal velocity of the respective particle, 
vTe,i = 2Te,i /me,i : 
  τ e,i = λe,i / vTe,i .        (3) 
The inverse quantity is called the collision frequency, νei ≡1/ τ e,i . 
 In the context of pulsed Z-pinch plasmas, the particle mean-free path is significant in 
several respects. First, it strongly affects the electron behaviour on the open magnetic field lines. 
Consider first the situation of a large electron m.f.p. Cole=L/λei<<1, where L is a plasma scale-
length along the magnetic flux tube. If the ends of the flux tube are in contact with a cold plasma 
(e.g., a blow-off plasma of the end electrodes), a very rapid replacement of hot electrons by the 
cold ones would occur. On the other hand, if the ends are flaring into the empty space, then, in 
principle, an ambipolar electric field could hold hot electrons and maintain a slow electron loss 
in the regime “one electron lost per one ion lost,” like in the mirror confinement [21]. But this 
would require the presence of the vacuum volumes at the ends.  
 Conversely, for a short electron mean-free path, an electron temperature gradient can be 
sustained along the flux tube, with the heat flux to the ends determined by the electron thermal 
conductivity. The possibility to describe the electron heat flux in terms of thermal conductivity 
requires actually pretty large values of the collisionality parameter, as the main contribution to 
the heat flux comes from the electrons that have energy a few times higher than electron thermal 
energy [18] and, respectively, significantly larger mean free path than thermal electrons. 
Therefore,  for Cole <10 one has to use one of the models for heat flux limitation (see brief 
summaries in Refs. [22, 23]). 
  Likewise, if the ratio Coli=L/λii for DT ions is not sufficiently large, the high energy tails 
of the ion distribution that are responsible for the fusion reactivity at modest plasma temperatures 
(Ti<10-15 keV, Ref. 24), would be rapidly depleted through the end loss, that leading to a 
reduced reactivity. The essence of this problem has been described in Refs. 25-27, and detailed 
simulations for the ICF setting are published in Ref. 28 where further references are also given.  
 Yet another effect where the parameter Col plays a significant role is the mesoscale 
plasma turbulence that may drive the anomalous transport (Bohm-like transport), see, e.g., Refs. 
[29, 30]: this parameter enters an expression for the growth rates of the drift-type perturbations, 
see Sec. 7.  
 Table 1 presents the plasma parameters for several regimes characteristic of the Z 
pinches. They do not correspond to any particular experiment, just indicate a rough range of 
parameters that can be met: line 1 corresponds to a DT plasma at the initial state of the MagLIF 
implosion, and line 2 to the final stage of this implosion; Line 3 corresponds to plasmas that can 
be formed during the fast heating of the wire at the early stage of the wire array implosion;  Line 
4 describes the plasma that appears in the experiments on the astrophysics-relevant jet formation; 
Line 5 contains parameters of the plasma that may be formed outside the liner early in the pulse. 
Parameter L corresponds to a cross-field spatial scale of the plasma 
 Figure 2 shows the split of the (ne, T) plane by the lines of a constant m.f.p. These lines 
represent the parameter Zλei for the electrons and parameter Z3λii  for the ions. Note that the 
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horizontal axis is in the units of the electron density. Shown in coloured dots are the locations of 
several typical plasmas. The red line corresponds to a sequence of states of the core plasma 
during the MagLIF implosion [13]. This is a hydrogen plasma and, accordingly, Z=1. A blue dot 
illustrates a plasma of the wire array during the run-in phase of the implosion [31]. We assume 
that the average charge state corresponds to Z=6. With that, the electron-ion mean-free path is 
~40 times longer that the ion-ion mean-free path. The green dot marks a plasma produced in the 
astrophysics-related jet experiments of the type [32]. Just these three examples show the breadth 
of the parameter space occupied by the Z-pinch plasmas.  
 

Table 1 Plasma parameters of relevance to Z-pinches 
 

 
 

 
ne, cm-3 

 
Te, eV 

 
Z 

 
A 

 
B, T 

 
L⊥, cm 

 
 

1 
 

7.21020 
 

300 
 

1 
 

2.5 
 

30 
 

0.2 
 

 
2 

 
6×1023 

 
104 

 
1 

 
2.5 

 
104 

 
0.007 

 
 

3 
 

1023 
 

25 
 

6 
 

27 
 

300 
 

0.0005 
 

 
4 

 
1019 

 
25 

 
6 

 
27 

 
30 

 
0.3 

 
 

5 
 

1018 
 

50 
 

6 
 

12 
 

100 
 

0.1 
 

  
 Another important parameter characterizing the plasma collisionality is the temperature 
equilibration time between the electrons and the ions. The equilibration time is evaluated 
according to equation (see Eqs. (2.3) and (2.17) in Ref. 18):   

 τ ei
(E ) (ns) =1021

A Te(keV )[ ]3/2

Zne(cm
−3)

.        (4) 

This time is important in the cases where the heating power goes initially into one of the plasma 
components, electrons or ions. In particular, in the MagLiF setting, the initial laser preheat goes 
predominantly into the electrons. The equilibration time is important for the electron-ion 
coupling in the problem of the heat transport. The temperature equilibration affects also the 
thresholds and growth rates of the ion-acoustic and drift instabilities (see Secs. 7 and 9). 
 Figure 2 shows the lines of τ ei

(E ) = const  in the (n, T) plane. For a DT plasma of MagLIF, 
with A=2.5, Z=1, the energy exchange time early in the implosion is 1-2 ns, which is sufficient to 
equalise the temperatures before the rapid change of the plasma radius begins. For other 
elements, the factor A/Z is close to 2. 
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2.2. Magnetization  
 
 We will define the magnetization parameter Mag as the product of the electron (ion) 
collision time and the corresponding cyclotron frequency (also called sometimes 
“gyrofrequency”), ωCe,i = ZeB /me,ic :  
 Mage,i =ωCe,iτ e,i          (5)  
We again use an acronym with more than one letter (Mag instead of M), not to confuse 
magnetization with the Mach number that is mentioned later in this article. Numerically, one has 
the following expressions for Mag: 

   Mage ≈ 3⋅10
20 Te(keV )[ ]3/2 B(T )

Zne(cm
−3)

;   Magi ≈ 6 ⋅10
18 Ti (keV )[ ]3/2 B(T )

AZ 2ne(cm
−3)

  (6) 

 If the magnetization parameter is large, a host of the transport phenomena in the 
corresponding plasma component becomes strongly dependent of the magnetic field and 
significantly anisotropic. In particular, the electron thermal diffusivity across the magnetic field 
decreases by a large factor compared to the unmagnetized case (see Sec. 6). As is clear from 
expressions (6), the strong magnetization of the electrons requires much lower magnetic fields 
than the magnetization of the ions. So, in a number of cases one may find the situation where the 
electrons are magnetized, whereas the ions are not. Under the typical conditions of dense Z-pinch 
plasmas, the electrons are magnetized in hotter areas and un-magnetized in colder ones. The 
partition of the (n,T) plane for the electrons and ions is shown in Fig. 3. The ions are magnetized 
above the corresponding lines. By locating the characteristic point for a particular experiment in 
Fig. 3, one can find out which version of the ion transport coefficients has to be used. For the 
electrons, as mentioned, the magnetized version is typical. 
 
2.3. Plasma beta 
 
 The ratio of the plasma pressure p to the magnetic pressure pM is obviously important in 
determining the plasma equilibria and macroscopic stability, but it also affects a number of other 
plasma processes, like wave propagation, microinstabilities, and transport phenomena. This 
(dimensionless) ratio, usually denoted as β, can be written as  

 β = 4×10−16
ne(cm

−3) Te(keV )+
Ti (keV )
Z

#

$%
&

'(

B(T )[ ]2
       (7) 

Note that for the plasma with significant ion charge, the plasma pressure at comparable electron 
and ion temperatures is determined predominantly by the electrons. This has important 
ramifications for the properties of the shock waves in such plasmas, because the upstream kinetic 
energy is distributed behind the shock between numerous electrons, this leading to a more 
modest temperature increase than the one that could be anticipated in the plasma with Z=1.  
 This large electron contribution to the pressure of the Z>>1 plasma affects the properties 
of the ion acoustic waves creating a possibility for these waves to be weakly damped even in the 
plasma with Te=Ti (unlike the Z=1 plasma where the ion acoustic waves experience a strong 
Landau damping on the ions, if Te=Ti), see e.g., Ref. 33. The reason is that the ion acoustic wave 
propagates at the speed ~ p / ρ ~ ZT / Amp , whereas the ion thermal velocity is ~ T / Amp , 
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i.e., significantly smaller than the sound speed for Z>>1, thereby making the ion Landau 
damping small.  
 The partition of the (n,T) plane by the lines of constant β is shown in Fig. 4 for the case 
of Te=Ti. It is worthwhile to note that for β~1 in a plasma of singly-charged ions one 
automatically has the two important spatial scales, the ion gyro-radius ρi and the ion collisionless 
skin-depth, c/ωpi approximately equal to each other. In a more general case of an arbitrary Z, 

 ρi
c /ω pi

≈
β
Z

          (8) 

 
 3. MAGNETIC FIELD EVOLUTION 
 
 3.1 Basic equations 
 
 Magnetic field evolution for the processes occurring on the time-scales much longer than 
the light transit time is described by the quasi-stationary Maxwell equations, 

 
∂B
∂t

= −c∇×E; ∇×B = 4π
c
j ,       (9)  

where the current density is: 

 j = eneu; u ≡ v− ve( ) ,        (10) 

and the plasma charge neutrality is assumed, Zni=ne. In this equation, v is the ion velocity that is 
equal to a high accuracy to the plasma hydrodynamic velocity (the electron-to-ion mass ratio is 
small), whereas u is a relative velocity of the electrons and ions, the “current” velocity. Equation 
(10) holds both for the plasma of hydrogen isotopes and plasmas with Z>1.  
 The electron momentum equation [18] relates the electric field to the plasma parameters:  

 .      (11) 

where we neglect the inertial terms on the left-hand side due to smallness of the electron mass; 
we also neglect the electron viscosity, as it is very small compared to the pressure term. The 
retained terms in Eq. (11) have the following meaning: the first term is the pressure gradient, the 
second is the Lorentz force, the third is the electron thermal force (see below), and the last term 
describes the electron friction against the ions and is proportional to the “current” velocity u.  
 Solving Eq. (11) for E, substituting the result into the first of Eqs. (9), and using Eq. (10) 
to express ve in terms of j and v, one finds: 

 

∂B
∂t

=∇× v×B[ ]− c
e
∇×

j
ne
×B

%

&
'

(

)
*+

c
e
∇×

Fei
ne
+
c
ene

∇ne ×∇Te[ ]+ c
e
∇×

FT
ne

"1" "2" "3" "4" "5"
.  (12)  

We have numbered the terms in the right-hand-side to identify them more easily in the 
discussion below.  
 
 3.2 Hall effect 
 
 The term “1” in Eq. (12) describes the frozen-in effect for the limiting case where the 
magnetic field is advected by the plasma flow with the plasma hydrodynamic velocity v. The 

0 = −∇(neTe )− ene E +
ve ×B
c

$

%
&

'

(
)+FT +Fei
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second term is related to the fact that the magnetic field is actually advected with the electron 
flow velocity ve, as is clear from Eq. (11). This term describes the so-called Hall effect and can be 
neglected if the current density j is sufficiently small, so that the current velocity u is much 
smaller than the characteristic hydrodynamic velocity v. For the latter, depending on the nature 
of the flow, one can take an Alfven velocity vA or the ion sound velocity cs. Note that, though the 
second term becomes zero if j is parallel to B, the constraint on the current density is still 
important, as it affects the evolution of various perturbations, in which the magnetic field may be 
not aligned with the current flow. The corresponding effects are described by the so called 
“Electron Magnetohydrodynamics” or “Hall Magnetohydrodynamics” [34]. Given that the 
current velocity is related to the magnetic field B and the length-scale L by u = (c / 4πene )(B / L) , 
one can formulate the following condition for the current velocity to be less than the Alfven 
velocity, u<vA: 

 L > c
ω pi

; ω pi =
4πnee

2

mp

Z
A

 .       (13) 

 The role of the Hall effect can be characterized by the dimensionless ratio that we call the 
“Hall number”, Ha, the ratio of u to vA: 

 Ha ≡ c
Lω pi

.          (14)  

Note that our dimensionless Hall number is different from a Hall parameter used in a solid-state 
physics (e.g., [35]) and characterizing the voltage across the current-carrying sample immersed 
into magnetic field perpendicular to the current. The “practical” expression for our Ha  reads:  

 Ha ≈ 2.3⋅107

L(cm) ne(cm
−3)

A
Z

.        (15) 

The partition of the parameter space by the lines of constant Ha for several values of L is shown 
in Fig. 5. [The multiplier Z / A  makes the plot independent of Z and A.] Large values of Ha 
mean that the Hall effect is important, and vice versa. The role of Hall effect in the laboratory 
pulsed-power-based experiments imitating astrophysical jets has been assessed in Ref. 36, 37. 
 
3. 3 Electron-ion friction 
 
 The term “3” in Eq. (12) describes resistive diffusion/dissipation of the magnetic field. 
The electron-ion friction force has two components, parallel to the magnetic field and 
perpendicular to it. The first does not depend on the magnetization and can be written as 
F||ei = −emeneνeiu|| . The second is proportional to u⊥ , with a coefficient somewhat dependent on 
the electron magnetization. This dependence is, however, relatively weak: in the case of weak 
magnetization the coefficient is the same as for the parallel force and in the case of strong 
magnetization it becomes by approximately factor of 2 higher than in the un-magnetizes case 
(see [18]). In the spirit of our broad qualitative approach we will neglect this difference and 
write: Fei = −emeneνeiu = −meνei j . The third term in Eq. (12) then becomes ∇× DM∇×B( ) , 
where DM is called “the magnetic diffusivity” and is related to the plasma electrical conductivity 
σ by  
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 DM = c
2 / 4πσ ,          (16) 

with σ =ω pe
2 / 4πνei . For a uniform DM one has =DM∇

2B , a pure diffusion. We 
will discuss the relation of this term and the advection term in Section 4. 
 
3.4 Biermann battery and Nernst effect 
 
 The last two terms (“4” and “5”) in the r.h.s. of Eq. (12) have a distinctly different 
structure from the first three ones: the terms “1”-“3” turn zero in the absence of the magnetic 
field, whereas the terms “4”-“5”, generally speaking, do not. These latter ones describe 
generation of the magnetic field and serve as source terms in Eq. (12). If one goes back to Eq. 
(11) and drops there B, one sees that these two terms act as an electromotive force. Of them, the 
term “4” leads to the magnetic field generation when the temperature and density gradients are 
not collinear to each other. This is an effect sometimes called (especially in the astrophysical 
literature) “a Biermann battery effect” [38, 39].  
 The term “5” has a more complex structure and depends significantly on the 
magnetization. It is (see Eq. (4.31) in Ref. 18, mind the difference in notation):  
 ,      (17) 

where  is a unit vector in the magnetic field direction, and the coefficients α⊥,α∧

depend significantly on the electron magnetization Mage. The last term in Eq. (17) describes the 
component of the force perpendicular to both the magnetic field and the electron temperature 
gradient (“Nernst effect”). This last term has a structure of the other advective terms, “1” and 
“2”. 
 For weak magnetic fields, where the magnetization parameter is small (“weak 
magnetization”) an expression for the thermal force, up to the first-order terms in the 
magnetization parameter, reads as:  

 FT ≈ −0.71ne∇Te −α1ne
eB×∇Te
mecνei

,       (18)  

where α1 is a numerical parameter of order 1. The first term here is a combination of the first two  
terms in Eq. (17), because the coefficients  and become equal to each other for Mage → 0 .  
 For a high magnetization, Mage>>1, the expression for the thermal force, up to the terms 
of the first order in the parameter 1/ Mage  becomes [18]: 

 FT = −0.71∇||Te −α2
ne

Mage
b×∇Te ,       (19) 

where α2  is another coefficient of order one. For strong magnetization, the Nernst term is small. 
 In the case of a weak to order-one magnetization, the Nernst term can be significant and 
may be dominant over the Biermann battery term, especially if the pressure and the temperature 
gradient are collinear. The Nernst term in this case is proportional to B (Eq. (18)); by comparing 
it with the term “1”  in Eq. (12), one can say that it describes the magnetic field advection in the 
direction opposite to the electron temperature gradient (towards lower temperatures). This may 
be quite important in the plasmas in the confinement mode, like in MagLIF and some of the 
MTF devices (see [13, 40, 41]), where the plasma is in a quasi-equilibrium state and the 
hydrodynamic advection is slow (see Sec. 6 below). 
 We compare the role of the Nernst term (in the un-magnetized case, where it can be quite   
important, Eq. (18)) and the evolutionary term (the left-hand side of Eq. (12)) by noting that, by 

∇× DM∇×B( )

FT = ne −α||∇||Te −α⊥∇⊥Te −α∧b×∇Te( )
b ≡ B / B

α || α⊥
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the order of magnitude, the ratio of the two (which we suggest to call “the Nernst parameter”, 
Ne) is equal to 

 Ne = "5"
|∂B /∂t |

~ Tτ
meL⊥

2νei

~ λeivTeτ
L⊥
2 .       (20) 

The numerical estimate for Ne can be written as: 

 Ne ~ 10
20[T (eV )]5/2τ (s)

Zne(cm
−3) L(cm)[ ]2

.        (21) 

We assume that Te~Ti=T. 
  
4. RESISTIVE MHD 
 
 If both Nernst, Hall and Biermann terms are small, an equation that describes the 
magnetic field evolution reads as: 

 ,       (22) 

where v is the plasma mass-flow velocity and DM is magnetic diffusivity (16). This is an 
equation of the resistive single-fluid magnetohydrodynamics. It has to be solved together with a  
plasma momentum equation that reads as 

 
∂v
∂t
+ v ⋅∇v = −∇p

ρ
−
B×∇×B[ ]
4πρ

+ν s∇
2v+νb∇ ∇⋅v( ) ,    (23) 

where p and ρ are the plasma pressure and density, and νs and νb are two components of the 
kinematic viscosity: the “shear” viscosity, νs, and the “bulk” viscosity, νb. We will focus on the 
shear viscosity νs, having in mind that sheared flows play a dominant role in the problems of 
magnetic dynamo and field enhancement by the plasma motion.  
 In a number of dynamical problems related to Z-pinch plasmas the “frozen-in” condition 
is used that implies that the last term in Eq. (22) is negligibly small. In order for this to be true, 
the plasma electrical conductivity has to be sufficiently high, so that magnetic diffusivity DM 
would be sufficiently low. The magnetic diffusivity (16) can be numerically evaluated as:  

 .        (24) 

 The ratio of the first term in the rhs of Eq. (22) to the second term is called the magnetic 
Reynolds number, ReM = Lv /DM , where v is characteristic fluid velocity and L is the length-
scale. For large magnetic Reynolds number, the diffusion term is small compared to the 
advection term, and vice versa. Expressing v in terms of the Mach number and sound speed, 
 v=Mcs,            (25) 
with  (in the plasma with Te=Ti=T), one arrives at the following numerical 
estimate: 

 ReM =
LMcs
DM

= 0.25ML(cm)T (eV )2 Z +1
AZ 2

,      (26) 

where L is the length-scale. The partition of the (T, L) plane by the lines of 
ReM /M( ) AZ 2 / Z +1 =const is shown in Fig. 6. Again, we introduce the Z- and A-dependent 

multiplier to make the plot applicable to various species. The magnetic Reynolds number is 

∂B
∂t

=∇× v×B[ ]+∇× DM∇×B[ ]

    

€ 

DM (cm2 /s) ≈ 4 ×106 Z
[T (eV )]3 /2

cS = (Z +1)T / Amp
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particularly significant for the experiments on the laboratory astrophysics of the type described 
in Ref. 32.  
 We proceed now to plasma viscosity – a dissipative effect that is present in Eq. (23). At 
the modest plasma temperatures characteristic of the present astrophysics-related studies, the 
ions are unmagnetized (see Fig. 1). This allows one to evaluate the plasma shear viscosity ν s  by 
an equation [18]:  

 ν s (cm
2 / s) =

2 ⋅1018 T (eV )[ ]5/2

A1/2Z 3ne(cm
−3)

.       (27) 

This quantity is very sensitive to the ion charge and becomes quite small for Z>6. In this case, 
the admixture of the light species (like hydrogen) may lead to a significant increase of the 
viscosity. The corresponding effect has been roughly evaluated in Ref. 42 and consistently 
analysed in Ref. 43.  
 The hydrodynamical Reynolds number defined as  
 Re = Lv /ν s ≡ LMcs /ν s         (28) 
is equal to  

 Re = 5 ⋅10−13 ML(cm)ne(cm
−3)Z 3 Z +1

T (eV )[ ]2
      (29) 

The Reynolds number is directly related to the ion collisionality (2):  
 Re ≈ MCol Z +1           (30) 
 Having a correct relation between the two Reynolds numbers, ReM and Re, is important in 
the studies of the magnetic dynamo: in most of the astrophysical systems one has ReM>>Re, due 
to a relatively low density. In the stellar interiors, including the Solar convective zone, however, 
one can have an inverse condition [44]. The ratio of the magnetic Reynolds number to the 
viscous Reynolds number is called the Prandtl number,  
 Pr = ReM / Re .          (31) 
As is clear from Eqs. (26) and (29), this number is a very strong function of the temperature        
(Pr∝T 4 ) and the ion species (Pr∝1/ Z 4 A ).  
 Anisotropic ion viscosity is more typical to hot, strongly magnetized plasma, like the one 
met in the magnetic confinement devices and in some versions of MTF. We briefly discuss the 
corresponding effects in Sec. 6.7 below.  
  
5. MAGNETIC RECONNECTION IN A DENSE PLASMA 
 
 Magnetic reconnection is a process of change of the global topology of the magnetic field 
within the time much shorter than the resistive diffusion time (a “sudden” change). A cartoon 
that illustrates one of the most dramatic forms of reconnection first mentioned by E.N. Parker 
[45] and J.W. Dungey [46]). is shown in Fig. 7. Here two flux tubes in otherwise weakly 
magnetized plasma are depicted; they are brought together by a slow motion of the ambient 
plasma (like in a Solar convective zone). When the flux-tubes touch each other at some point and 
“reconnect” there, a part of the magnetic energy is released by the straightening of each of them. 
Also, the points that were not connected along the magnetic field lines (say, points 1 and 2 in 
Fig. 7 become connected.  
 In the natural environment, reconnection occurs in a variety of astrophysical objects, in 
particular, in Solar and stellar flares. For the parameters of the transition region between the 
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Solar photosphere and corona, which plays an important role in the flare events, the plasma 
temperature is a few electron-volt, and the magnetic diffusion coefficient DM (24) is ~1.5⋅106 
cm2/s. Taking as a characteristic scale L~1000 km, one finds that the resistive time would be 
~L2/2DM~3⋅1010 s~ 1000yr (!). In reality, the typical energy release time in the Solar flare is ~ 10 
min. In order to explain this huge discrepancy, one needs to find some mechanisms that would 
cause fragmentation of the initial smooth (with a scale ~L) current distribution into smaller and 
smaller structures, possibly down to the scales approaching the Debye radius (if the current-
driven microturbulence is involved). Local plasma temperature may then increase significantly. 
There is a remarkable progress in the understanding of the processes underlying the fast energy 
release (see review [47]), but it is still an area of active research.  
 Spatial scales that are involved in reconnection include the global scale L, collisional 
electron-ion mean-free path, λei, the ion skin-depth, c/ωpi (equal to the ion gyroradius in the β=1 
hydrogen plasma, Eq. (6)), the electron skin-depth, c/ωpe, and, finally, the electron Debye radius 
rDe=vTe/ωpe. For a hydrogen plasma with n= 1012 cm-3, T=10 eV, one has λei= 300 cm,  c/ωpi=30 
cm, c/ωpe=0.5 cm, rDe=30 µm, so that  
 
  L>>λ>c/ωpi>>c/ωpe>>vTe/ωpe.        (32) 
 
As one can see, there is a clear separation of scales in this example, allowing the energy to 
cascade to the smallest scales, where collisionless dissipation would occur.  
 On the other hand, deeper in the stellar interior, the relation between the spatial scales 
may be quite different. If one takes, as an example, a middle of the convection zone  [44], at the 
depth of about 0.1 solar radius, where the magnetic fields are, probably, generated, one finds 
there a plasma with the temperature of ~ 100 eV and density ~ 1022 cm-3. The relations between 
the aforementioned parameters becomes now quite different: the mean-free path becomes only a 
few times larger than the Debye radius and much smaller than all other scales, except for the 
global scale. Indeed, one has now λei=310-6 cm, c/ωpi=310-4 cm, c/ωpe=510-6 cm, rDe=10-7 cm, so 
that 
 
  L>>c/ωpi>>c/ωpe>λ>vte/ωpe.        (33) 
 
This means that reconnection under such circumstances, if present, should be completely 
governed by the resistive MHD phenomena. Most probably, it occurs via formation of smaller-
scale hydrodynamical vortices (called in ths context “plasmoids”) that would cause enhanced 
dissipation of the magnetic field [48-50].  
 These regimes of reconnection may be studied with the Z-pinch plasmas. We would have 
to use a higher-Z plasma, like carbon, in order to enhance the electron scattering. For L=100 µm 
(plasma radius after rebound), Z=6, ne=1021 and T=100 eV, we would have λei=0.02 µm,  
c/ωpi=50µm, c/ωpe=0.5 µm i.e., an ordering similar to that met in the stellar convective zones, Eq. 
(33). Specific design of such experiment goes well beyond the scope of this tutorial.  
 
 
 
 
 



 13 

6. MTF AND MagLIF PLASMAS  
 
 6.1 General framework 
  
 One of important applications of Z-pinches is a quasi-adiabatic compression of a pre-
formed magnetized plasma by an imploding liner. In this scheme, the liner is assumed to be 
much heavier than the plasma inside, the implosion velocity to be much smaller than the plasma 
sound speed and the heating to be caused by the pdV work performed by the liner on the plasma 
inside. In the course of implosion the plasma passes through a sequence of mechanical equilibria 
of a gradually decreasing radius, with the spatial distribution of the plasma parameters 
determined by the transport processes in this plasma. The plasma beta is typically high, β>1 and 
in this respect the situation is quite different than the equilibria in magnetic confinement devices. 
[Note that the relative slowness of the evolution makes this plasma different also from the 
inertial confinement plasma.] The fusion concepts employing this intermediate approach are 
usually termed as MTF (Magnetized Target Fusion) or MagLIF (Magnetic Liner Inertial Fusion). 
Relative importance of various transport processes in this scheme is quite different from the low-
beta plasma. Therefore, we present in this section an overview of transport processes in this 
high-beta, slowly (in terms of the acoustic time) evolving plasma. To be more specific, we 
discuss a set of parameters relevant for the MagLIF project, although the same general approach 
can be used for other configurations involving plasma compression by the liners, in particular, 
compression of field-reversed configurations [14,15]; for a general review of the field-reversed 
configurations (FRC) see Ref. [50].  
 To set the stage for the further analysis of the plasma behaviour, we start from a simple 
scaling exercise for a purely radial compression. In this scaling we initially ignore the plasma 
and magnetic flux losses and later evaluate the losses on the thus found background. The logic 
behind such an approach is that, to be successful, the system has to operate with small losses; 
therefore, a subsequent check allows us to circumscribe the parameter domain where one can 
expect a good performance. 
 We characterize the compression by the radial convergence C, 

 
    

€ 

C ≡
r0
r

           (34) 

where r0 and r are the initial and the current radii of the cylindrical cavity. By “initial” we mean 
the radius at the moment when a pre-plasma was formed. This radius may be slightly less than 
the radius at the onset of the current pulse [13]. 
 Conservation of particles, entropy, and magnetic flux for the loss-free compression leads 
to the following scalings:  
     

€ 

n = n0C
2 ,     

€ 

p = p0C
10 /3,    

€ 

B = B0C
2, T = T0C

4/3 .      (35) 
We see that the magnetic pressure     

€ 

pM = B2 /8π ~C4 grows faster than the plasma pressure. In 
order to ensure that the liner pdV work goes mostly to the plasma, not to the magnetic field, it is 
desirable to start implosion from the state where the plasma pressure is several times higher than 
the magnetic pressure, so that the parameter     

€ 

β ≡ 8πp /B2  in the initial state is significantly higher 
than 1. For β, one obviously has: 
     

€ 

β = β0C
−2 /3.          (36) 
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Assuming, as in Slutz et al. [13], β0~200, we find that even for a high radial convergence of 30, 
the final value of β is still high, ~30. Given this consideration, we focus below on a high-beta 
plasma.  
 Scaling (35) is related to the hot core plasma, whereas there is always a colder plasma 
near the walls. We will dwell on some features of this denser plasma further in this sections. 
Scaling (35) certainly overpredicts the central temperature and density compared to the detailed 
numetical analyses [13, 40, 41]. Still, it can be quite helpful in a rough identification of transition 
between various models of plasma transport, magnetic field advection, plasma rotation, etc. in 
the further sections 
 Scalings (35) and (36) correspond to a purely radial implosion of a cylindrical plasma 
with an axial magnetic field. For other magnetic configurations and/or implosion geometries the 
scaling may be different. In particular, in the FRC imploded by a cylindrical liner, without  
“push” from the ends, beta averaged over the volume stays at the initial level of β0~1, and the 
liner length shrinks slower than the liner radius [52]. Conversely, if the FRC is imploded in a 
homologous fashion [14], so as to maintain its length-to-radius ratio constant (this requires a 
“push” from the ends), β increases in the course of compression, , and one can have a 
high efficiency of the implosion even starting at β0~1. However, the homologous implosion 
requires more complex magnetic configurations and liner shapes than just a cylindrical liner with 
a uniform axial bias field. Our analysis can be reproduced for these other configurations by 
changing the C-scaling; the general framework remains the same. 
 For the pressure scaling (35), one has !p / p = −(10 / 3)!r / r . The “minus” sign accounts for 
the fact that compression corresponds to . We will characterize the energy losses (thermal 
conduction and bremsstrahlung) by the loss times τcond and τrad. With those taken into account, 
the pressure evolution equation becomes 

 
    

€ 

˙ p 
p

= −
10
3

˙ r 
r
−

1
τ cond

−
1
τ rad

,        (37) 

 
    

€ 

τ cond =
r2

6χ
; 

  

€ 

τ rad =
p

Qrad
.        (38) 

Here χ is a thermal diffusivity and Qrad is the radiation power per unit volume. The factor “6” in 
the first equation accounts for the cylindrical geometry (roughly, the square of the first root of 
the Bessel function of zeroth order). For different stages of the implosion different thermal 
conductivity models may be valid. We will discuss this in the further sub-sections. For τrad of a 
pure DT plasma one has [52]:  

 
    

€ 

τ rad (s) =
2.84 ×1013 T (eV )

n(cm−3)
.        (39) 

 In order for the plasma heating by the pdV work to be efficient, the loss terms in Eq. (37) 
must be small compared to the heating term, by some significant margin. To characterize the 
effect of various loss mechanisms, we introduce several dimensionless parameters that have to be 
large in order to have good plasma confinement. For example, the thermal conductivity to the 
walls will be characterized by the parameter Cond = τ cond 10 !r / 3r , see Eq. (37). The parameter 
Rad characterizing radiation losses can be introduced similarly, by replacing τcond by τrad (Eq. 
(39)). The possible redistribution of the plasma along the axis will be characterised by parameter 
Ac (the notation refers to the word “acoustic”), see Sec. 6.5. Other important parameters 
characterizing the plasma state have been introduced in Sec. 2-4. 

    

€ 

β = β0C

    

€ 

˙ r < 0
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 As a reference point for the initial plasma state, we take the one similar to that presented 
in Slutz et al., [13]: 
 ρ0 = 3mg / cm

3 ( n0 = 7.2×10
20cm−3 ),     

€ 

T0 = 300eV ,     

€ 

B0 = 30T ,  
     

€ 

r0 = 3mm , L=0.5 cm, vL=5×106 cm/s       (40) 
For the liner velocity we take an average value between the plasma formation time and the time a 
couple of nanoseconds before the rebound. All these parameters are not meant to represent any 
particular case, just a rough general characterization of typical parameters.  
 Note that we focus on the hot central part of the plasma that occupies large fraction of the 
total liner interior. On the other hand, the radial pressure equilibrium of a β>>1 plasma means 
that near the wall a colder and much denser plasma will be present. In some cases, its properties 
may become important for the overall consistency of the analysis. We dwell on these issues in 
Section 6.4. 
 
 6.2 Collisionality and magnetization 
 
 Following Sec. 2, we characterize the plasma collisionality by the ratio of the length of 
the pinch, L, to the collision mean-free path λ (the same for the ions and electrons in the DT 
plasma with Te=Ti). For the scalings (35), one has  
 Col =Col (0)C−2/3 ,         (41) 
where subscript “0” refers to the initial plasma. For the reference set of parameters (40), one has 
Col (0) ≈ 750 . For a 30-fold radial convergence, the parameter  Col becomes ~ 100, still large 
compared to unity. This means that the parallel transport is collisional at all stages of the 
implosion.  
 The ion magnetization parameter, Magi, scales as 
 Magi =Magi

(0)C2          (42) 
For the reference set of parameters, Eq. (40), 
 Magi

(0) = 0.03 ,          (43) 
meaning that the ions are initially un-magnetized (collisional). In the course of implosion, they 
become magnetized at C=4–5, and, by the time of the maximum compression (C=30), the 
magnetization becomes significant.  
 The electrons are magnetized from the outset, with 
 Mage

(0) = 2 .          (44) 
We emphasize that this discussion relates to the central part of the plasma. Near the walls the 
plasma remains in the un-magnetized state during the whole implosion. 
  
 6.3 Cross-field heat transport 
 
The ions are so highly collisional initially, that, despite the fact they are unmagnetized, their 
thermal conductivity is smaller than the magnetized electron thermal conductivity. Using 
equations (2.13), (2.15) from Braginski, one finds that initially  

 χe

χ i

!

"
#

$

%
&

(0)

≈ 20 .          (45) 
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The two become equal at Mage=    

€ 

λ /ρe ~ (mi /me)
1/ 4 . This happens early in the implosion, at C~2. 

From this point on, the classical cross-field electron thermal conductivity is small. The ion 
thermal conductivity remains un-magnetized until C~5-6. At the transition point, where Magi~1 
(C~5), the ion thermal diffusivity is approximately  

 
    

€ 

χ i⊥ = 0.38 cT
eB

          (46) 

where T and B are taken at the transition point (see Eq. 4.40 in Braginski). Note that this, purely 
classical result is an order of magnitude higher (!) than the canonically-defined Bohm thermal 
diffusivity, 

 
    

€ 

χBohm =
1

16
cT
eB

          (47) 

(see the left part of Fig. 8). The difference is caused by a more-or-less arbitrary introduction of a 
small coefficient 1/16 in the canonical expression for χBohm. Note that drift-wave theory allows 
for transport coefficients well in excess of  (47) (e.g., [29, 54]). Still, Eq. (47) is a commonly 
accepted reference equation and we will use it as such. 
 Further on, at C>5, the ion magnetization increases and we enter a regime of magnetized 
ion thermal conductivity, unless microturbulence develops (see below, Sec. 7). 
 As mentioned in Sec.6.1, we characterize the role of cross-field transport by the ratio of 
the first and the second terms in the r.h.s. of Eq. (37). The corresponding dimensionless 
parameter Cond  is 

 Cond = 10vτ cond
3r

,          (48) 

where v is the implosion velocity. No power-law representation of Cond for the whole implosion 
process is possible, as the heat conduction regimes change from the electron-dominated process 
very early in the implosion, to the un-magnetized ion thermal conductivity, and eventually to 
magnetized ion thermal conductivity. Also, especially in this latter regime, there is a possibility 
of the onset of drift turbulence which would lead to a Bohm-like heat transport.  As the cross-
field plasma losses are a main cause of concern for magnetic thermal insulation, we discuss the 
possible anomalous transport in a separate section, Sec. 7. 
 Numerical results for the thermal diffusivity for various regimes of the cross-field 
transport are presented in Appendix A. It is easy to see that their scaling with the convergence C 
is as follows: 
 ;   .      (49) 
The corresponding plots for the reference case (40) are presented in Fig. 8. Using these plots, one 
can find parameter Cond (Eq. (48)) as a function of C. We use a simplified model of the constant 
implosion velocity; Eq. (38) then yields:  

  Cond = 10
3
r0τ cond
rτ imp

=
5
9

r0r
χ⊥τ imp

.       (50) 

The results of using this equation for the thermal conductivity model described by a red line in 
Fig. 8 are shown in Fig. 9. For reference purpose, shown is also a line corresponding to the 
Bohm thermal diffusivity (blue line) and to a 10-times Bohm diffusivity (green line). One sees 
that, for the latter model, the cross-field losses become non-negligible. On the other hand, as will 
be shown in Sec. 7, the high collisionality of the MagLIF plasma makes so high a value of the 
cross-field transport improbable. 
 

    

€ 

χ⊥e,i = χ⊥e,i
(0) C−8 /3

    

€ 

χBohm = χbohm
(0) C−2 /3
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 6. 4 Magnetic field evolution 
 
 The radial velocity of the plasma in the MagLIF system is of the order of the liner 
implosion velocity, vL, so that the magnetic Reynolds number, defined with respect to the 
instantaneous radius r, is 

  ReM =
rvL
DM

.          (51) 

For the dependences (35), the ReM scales approximately as C, ReM ≈ CReM
(0) . For the parameters 

mentioned in Eq. (40), one has ReM
(0) ≈150 ; therefore, the frozen-in condition holds for a core 

plasma to a high accuracy during the whole implosion. This does not mean, however, that there 
is no magnetic field redistribution over the cross-section: as there is a continuous heat loss from 
the peripheral plasma to the walls, the core plasma starts slowly flowing towards the walls, to 
increase a density there and thereby maintain the pressure equilibrium in the presence of the 
peripheral cooling (a “cooling flow”). This leads to formation of a dense plasma layer near the 
walls. The magnetic field is advected by this flow and compressed together with the colder near-
wall plasma.  
 Under the condition of ∂(nT ) /∂r = 0 , which describes a radial equilibrium in a β>>1 
plasma, there will appear a layer of a very high density near the walls. In this zone, due to large 
radial temperature gradient, the Nernst effect may become important. As mentioned in Sec. 3.4, 
it causes advection of the magnetic field towards the area of the lower electron temperature, i.e., 
towards the walls.  At modest conductivity of the walls, the field can soak into the walls, thereby 
causing some flux loss. The Nernst effect, although significant, does not lead to too strong 
confinement degradation in the MagLIF plasma (Ref. 13). A similar conclusion was reached in 
the analysis of another high-beta plasma system with the electron beam heating of the core, see 
Ref. 55. 
  
 6. 5 Parallel heat losses 
 
 The parallel acoustic time,     

€ 

τ || = L /2cs , determines the time for the plasma to reach a 
mechanical equilibrium over the axial direction. If the ratio of τ|| to characteristic radial 
compression time   

€ 

r / ˙ r  to is large, this means that the plasma does not experience significant 
parallel redistirbution of mass, and the axial density distribution does not evolve. Conversely, if 
this ratio is large, the plasma reaches pressure equilibrium in the parallel direction and, if the 
ends contain holes, may experience a non-negligible parallel outflow. For the corresponding 
dimensionless parameter that we denote by Ac, one has: 

 Ac = vL
2rcS

.          (52) 

For the most part of the compression phase, where one can use a rough approximation of a 
constant v,     

€ 

v = r0 /τ imp , one has 

 Ac = r0L
2rcsτ imp

∝C1/3 .         (53) 

In other words, the axial redistribution process is most significant early in the implosion process. 
For the set of parameters (40), one has Ac(0) ≈ 0.5 . This means that initially we are operating in 
the transitional regime, where some redistribution of plasma along the pinch takes place.  
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 The parallel electron heat loss is controlled by the length of the system. For the parallel 
thermal conduction time over the length L/2, one can use the following rough estimate: 

    

€ 

τ ||cond = L2 /4χ||e, where   

€ 

χ||e is evaluated according to Eq. (A9). The corresponding dimensionless 
parameter is Cond|| = (10 / 3)(vτ ||cond / r) . For a simple model of a constant implosion velocity 

    

€ 

v = r0 /τ imp , one has 
 Cond|| =Cond||

(0)C−1/3          (54) 

For the set of parameters (40), and τimp=70 ns, one has Cond||
(0) ≈ 6 . In other words, the axial 

heat loss is small during the initial stage of the implosion but may become non-negligible later in 
the pulse.  
 The dimensionless parameters characterizing the core plasma confinement are 
summarized in Table 2. They are defined in a way that their higher values correspond to a better 
performance of the system.  
 
6.6 Radiative losses 
  
We characterize the effect of radiative losses by the ratio Rad of the first to the last terms in the 
right-hand-side of Eq. (37). In order the radiation losses to be unimportant, this ratio must be 
large. One has, according to Eqs.  (38) and (39): 

  Rad = 9×1013 v(cm / s) T (eV )
r(cm)n(cm−3)

.       (55) 

This equation cannot be used near the turn-around point, where the velocity is small and a 
different analysis is required (see Ref. [13]). Eliminating also the very early stage of the 
implosion and using a rough model of v=const=r0/τimp, one can rewrite Eq. (55) as: 
 Rad = Rad0C

−1/3 .         (56)  
In other words, the role of radiation increases towards the end. However, for the reference case 
(40) the parameter Rad0 is large ~40, so that even for C=30 the radiation remains insignificant. 
[Note that this conclusion relates to a pure DT plasma, without impurities.] 
 On the other hand, Eq. (55) shows that, if one creates the pre-plasma too early, before the 
liner has already reached significant velocity, the radiation may lead to a cooling of this initial 
plasma, before the compression picks up.  
 

Table 2 Main dimensionless parameters used to characterize the plasma confinement 
 

 
Parameter 

 
Definition 

 
Significance 

 
Cond, Eq. (50) The ratio of the PdV heating rate and 

cross-field heat loss 
Must be large to allow efficient 
plasma heating. 

Rad, Eq. (55) The ratio of the PdV heating rate and 
radiative heat loss 

 
“ 

Ac, Eq. (52) The ratio of the plasma axial 
redistribution time and the implosion 
time 

If this parameter is large, one does 
not need to “plug” the ends of the 
flux-tube 

ReM, Eq. (51) The ratio of the magnetic diffusion 
time and the implosion time  

Has to be large to avoid magnetic 
flux loss from the core plasma 
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 Another caveat is that the plasma parameters are strongly non-uniform, varying both in 
the radial and axial direction, and, as was emphasized in Ref. [55], this may lead to strong 
radiative losses from the plasma near the boundaries, both radial and axial.   
 
 6.7  Plasma rotation 

 
 The spontaneous plasma rotation which sometimes adds significantly to uncertainties in 
the predictions of the plasma behavior is easily predictable for the MagLIF: as the plasma is in a 
direct contact with the end walls (along the axial field lines), the electrostatic potential of the 
plasma core is on the order of the floating potential, ~2Te/e. This sets the E×B rotation at a low 
level . This slow rotation cannot have a significant effect on the plasma 
confinement (unless the plasma beta becomes higher than ). Note that, due to the strong 
ion magnetization at the later stages of the implosion, the collisional viscous effects become 
insignificant. Note also that in the systems with closed field lines, like the FRC, the rotation 
velocity can in principle be much higher, approaching the sound speed and thereby affecting 
gross plasma stability.  
 
 6.8 Impuruty shielding 
  
 For the plasma that is in direct contact with the liner an important issue is that of the 
transport of heavier impurities from the wall towards the plasma core. The inner surface of the 
liner is ionized by a very high heat flux from the compressed plasma inside and the ions of the 
wall material can be pulled into the plasma by the effect of the thermal force in the un-
magnetized region near the walls. This effect has been considered in Ref. 55. The impurity ions 
experience the thermal force exerted not only by the electrons but also by the plasma ions. The 
latter contribution is actually dominant near the walls, where the plasma ions are not magnetized, 
whereas the electrons are [56].  
 In the un-magnetized zone of a relatively cold plasma near the wall the thermal force 
acting on the impurity ions scales as Z2 [56] and is directed inward, towards the hotter plasma. 
This creates an impurity ion flow whose velocity is determined by the balance of the thermal 
force and the friction force against the plasma ions. This might have created a serious problem 
for the plasma life-time but, fortunately, the ions become magnetized as soon as they get to a 
slightly hotter plasma closer to the core.  
 To provide somewhat more detailed description of the processes involved, we introduce 
the charge and the atomic mass of the impurity, Zimp and Aimp, as well as an atomic mass for the 
fuel made of hydrogen isotopes, AH, which is equal to 2 for deuterium and 2.5 for the 
equicomponent mixture of deuterium and tritium. The impurity ions have to have a low 
concentration as otherwise the radiative losses become too high. We therefore consider them as 
test particles and account only for their collisions with the fuel particles. As the impurity ions are 
heavy, each 90-degree scattering event for the plasma ion leads only to a small-angle scattering 
of the impurity ion. Therefore, the 90-degree scattering of the impurity ion requires time 

 τ imp ≈
λH
vTH

Aimp
AHZ

2 .         (57)

 The ion cyclotron frequency for the impurity ions is ωCimp = ZimpAH / Aimp( )ωCH  so that the 
magnetization parameter for the impurity ions is  

  

€ 

vrot ~ vTi(ρi /r)

    

€ 

(r /ρi)
2
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 Magimpurities ≈ MagH / Zimpurities .        (58) 
We see that, with the increasing distance from the wall, the hydrogen is magnetized first, 
followed by magnetization of impurities.  
 The thermal force acting on the impurity ions is determined by the distribution function 
of the fuel ions and drops rapidly when the latter get magnetized. Moreover, further from the 
wall the effect of the cooling flow (Sec. 6.4) becomes significant, and the impurities get 
entrained by this flow that prevents them from entering the hot plasma core. The interplay of 
these two effects leads to the impurity accumulation in a narrow layer near the wall, without any 
direct impurity effect on the core plasma. The quantitative description of this phenomenon is 
presented in Ref. 56. 
    
7. ANOMALOUS HEAT TRANSPORT  
 
 As mentioned above, the meso-scale plasma turbulence driven by the gradients of 
temperature, density and the magnetic field can lead to the diffusion coefficients significantly 
exceeding the Bohm diffusion coefficient (47). By the “mesoscale” we mean perturbations 
whose scale length is greater than the ion gyro-radius but smaller than the gradient scale length 
L⊥ for the temperature, density and the magnetic field (e.g., L⊥T = T / |∇T |for the temperature 
gradient scale length). In particular, analysis of Ref. [29] has shown that in a high-beta 
collisionless plasma the drift instabilities can give rise to diffusion coefficient that is ~ 10 times 
higher than DBohm. This would lead to significant heat losses from the MTF/MagLIF plasmas, 
even for the implosion times as short as in MagLIF.  
 The characteristic frequency of these mesoscale modes is drift frequency,
ωD = cTk⊥ / eBL⊥ ,  where k⊥ is the component of the wave number perpendicular to both the 
magnetic field and the gradient (in the cylindrical geometry this would be an azimuthal 
component of the wave number). Usually the main contribution to the anomalous transport 
comes from the largest-scale modes, with  k⊥ ~1/ L⊥ [54], for which 

  ωD =
cT
eBL⊥

2 .         (59) 

The most unstable perturbations are strongly elongated along the field lines, with k||~1/L||<<1/L⊥ 
[54].  
   

Table 3 Parameters related to collisional effects in the drift-wave turbulence 
 
The 
system* 

T (eV) n (cm-3) B (T) (cm) L||(cm) ε 
Eq. (60) 

1/Col 
Eq. (2) 

 
1 

 
103 

 
4⋅1022 

 
2⋅103 

 
4⋅10-2 

 
0.5 

 
6⋅10-6 

 
10-4 

 
 

2 
 

104 
 

1014 
 

5 
 

200 
 

20000 
 

12 
 

102 
 

 
* “1” is a MagLif system half-way into implosion, for the convergence C~8; “2” is a generic mid-size 
tokamak.  Note the difference in the collisionality parameters ε and 1/Col.  

 

L⊥



 21 

 Due to high plasma densities typical of the Z-pinch plasmas, the drift frequency (59) can 
be significantly smaller than the ion collision frequency , and the mean free path can be 
much smaller than L||. The condition ωDτ ii = ε <<1  for an equicomponent DT plasma can be 
represented numerically as:  

  ε ≡
2.4 ⋅1010 T (eV )[ ]5/2

n(cm−3)B(T ) L⊥(cm)[ ]2
,        (60) 

whereas the condition of the strong collisionality for the parallel dynamics, k||λii<<1. for k||~1/L|| 
is equivalent to the condition Col=  that is described by Eqs. (1), (2). Taking as an 
example the MagLIF plasma half-way through the implosion, at C~8, one has T~1 keV, 
n~4×1022 cm-3, ~ 0.04 cm, and ε~10-5. Note that for a typical magnetic confinement devices 
the parameters ε and 1/Col  are not small but rather very large. A comparison of some generic 
tokamak with characteristic parameters of MAGLIF systems is presented in Table 2.  
 The smallness of parameters ε and 1/Col means that the mesoscale turbulence has to be 
described by collisional drift instabilities that are quite different from the collisionless 
instabilities considered in Ref. [29], especially in a high-beta plasma. This analysis has been 
performed in Ref. [30] and has led to a conclusion that in the regime of ε, 1/Col <<1, the 
diffusion coefficient is smaller than the Bohm diffusion coefficient (47) by a factor of 3-5. 
According to discussion of Sec. 6.3, this would make anomalous cross-field transport in the 
MagLIF-MTF setting relatively unimportant. 
 Another and quite different type of instability can be driven by the axial heat flux to the 
cold end-walls. This instability was considered in Ref. 57 (see also Ref. 58) for the initially un-
magnetized plasma; it leads to a spontaneous growth of magnetic perturbations. If in the 
unperturbed state there are collinear temperature and density gradients (along z), then the 
Biermann battery effect is absent and the magnetic field is not generated. However, as pointed 
out in Ref. 57, this state may be unstable with respect to perturbations with the wave vector 
perpendicular to the common direction (say, z) of the density and temperature gradient.  The 
feedback loop works then as follows: imagine that there appeared a perturbation of the magnetic 
field δBy(x) directed along y and varying along x. This field would then create a heat flux and the 
corresponding temperature gradient in the x direction by virtue of the Leduc-Righi effect (an 
effect thermodynamically conjugate to the Nernst effect) that drives the heat flux in the direction 
perpendicular to both the temperature gradient and the magnetic field (see, e.g. text [35]).  This 
effect in a fully ionized plasma is described by Eq. (4.33) of Ref. 18:  

  
δqex = χ∧δBy

∂Te
∂z          

(61) 

where δBy is the magnetic field perturbation and δq is an associated perturbation of the electron 
heat flux. An expression for χ∧ has to be taken for the limit of a weak magnetization (as initially 
there is no magnetic field): 

  χ∧ ≈ 5.5
eneTτ ei

2

me
2c

          (62) 

(see Eq. 4.37 and Table 2 in Ref. 18).   
 Since the magnetic field perturbation varies along x, so does the heat flux, thereby 
creating a temperature gradient in the x direction. This temperature gradient then couples with 
the unperturbed axial density gradient (along z) by the Biermann battery mechanism,  

1/ τ ii

L|| / λii >>1

L⊥
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∇ne ×∇δTe , and may enhance the seed (y) component of the magnetic field. It turns out that this 
happens if the unperturbed density and temperature grow in the same direction; if the 
temperature grows in the direction opposite to the density, perturbations damp.  A formal 
description of this interesting effect can be found in Ref. 57. There are no analyses of the similar 
instability in the presence of an axial magnetic field available at present.  
 
8. SIMILARITY AND SCALING LAWS 
 
 Scaling relations allow one to extrapolate the experimental results from one experiment 
to another, e.g. from a smaller and less expensive experiment to a larger and more expensive one 
at the planning stage for the latter. One can also apply this approach to the studies of the 
laboratory astrophysics, where the scaling will be made between a natural astrophysical 
phenomenon and a laboratory experiment.  
 A textbook example of similarity is the Reynolds similarity (see e.g. Ref. [59]) for the 
flow of incompressible viscous fluid past a rigid body immersed into this fluid. The flow can be 
characterized by its velocity u at the infinity, fluid mass density ρ and fluid kinematic viscosity 
ν. The body is characterized by its scale size L. Hydrodynamic equations describing this flow 
when written in a non-dimensional form, with the dimensions normalized to L and velocities 
normalized to u turn out to be identical between the two systems, which may be different in the 
size of the body and flow velocity, provided the Reynolds number Re=uL/ν is the same between 
the two systems. An important additional requirement for this similarity is the geometrical 
similarity of the system: the shape of the bodies has to be the same (up to the scale 
transformation), and the orientation of the body with respect to the incoming flow must be the 
same as well.  
 The flow that is uniform and steady at the infinity may become non-steady and turbulent 
around the body and in the wake. If the time-scales are normalized to L/u, then all the statistical 
spatio-temporal characteristics of the turbulence become identical between the two systems. The 
stresses at the surface (both normal and tangential components) will be distributed identically 
over the surface: their magnitude will scale as ρu2f(Re), where f is some function of the Reynolds 
number. This function cannot be found from the similarity arguments alone: it has to be 
determined from the solution of the hydrodynamic equations (or from experiment). However, if 
the Reynolds numbers between the two systems are the same, this latter part becomes 
unnecessary: the distribution of stresses measured in one system (say, the smaller one) could be 
immediately predicted for the other (larger) system.  
 In more complex systems the number of dimensionless parameters that need to be held 
constant in order to make two systems similar (i.e., described by the identical non-dimensional 
equations) can be larger than one. What is important for the similarity exercise to be useful is 
that this number be less than the number of constituent parameters (like u, L and ν in the 
aforementioned example). If the number of constraints is equal to the number of constituent 
parameters, the system becomes “stiff”: only the systems with the same parameters will behave 
similarly (in this case identically).  
 If one tries to find similarities for all-encompassing plasma models, that would include 
plasma kinetics, radiation and atomic processes, one usually encounters this “stiff” situation. In 
order to avoid it, one should identify the most important processes and parameters governing the 
phenomenon of interest and find out whether reduced models can be used. For example, if one is 
interested in some large-scale hydromagnetic phenomenon in astrophysics, one can assume that 
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this phenomenon can be described by the set of single-fluid MHD equations (Sec. 4). Then, one 
has to make sure that the laboratory counterpart is also correctly described by the single-fluid 
MHD equations and, in particular, that the Hall terms are subdominant (Sec. 3). The further step 
would be the comparison of the magnetic and viscous Reynolds numbers for both systems. If one 
is interested in the ideal MHD effects, not involving in a significant way the turbulent magnetic 
field generation/amplification, one can just require that both Reynolds numbers are much greater 
than unity (say, 50). Then one enters the domain of an ideal magnetohydrodynamics, which has a 
very broad class of similarities (“Euler similarities” described in Refs. 11, 60, 61) that allow for 
the presence of shocks and turbulence (the latter in a non-dissipative range of scales). To use this 
similarity in its strict form one would have to take care of the geometric similarity and the 
similarity of the hydrodynamic characteristics (e.g., the ratio of the ram pressure and gas 
pressure, as well as magnetic pressures at the characteristic point(s). Dependence on the (large) 
Re and ReM drops out and their specific values become unimportant, unless one wants to consider 
turbulence down to dissipative scales. 
 A number of astrophysics-related laboratory experiments have successfully used the 
Euler magnetohydrodynamic scaling that is based on the assumption that both hydrodynamic and 
magnetic Reynolds numbers are large. To give the reader some idea of the scope of these 
experiments, we mention a few of them. In Ref. 32, magnetically-driven tower jets were 
generated by the conical wire arrays and their deflection by the plasma “cross-winds” was 
discovered. In the same paper, magnetically-supported “tower jets” were produced from the 
radial wire arrays. In Ref. 62 the jets were produced from a thin disk electrode. Plasma rotation 
was studied in  Refs. 32 and 63. Astrophysics-relevant bow shocks were produced in nested wire 
arrays [64], where radiatively-cooled plasma streams ablated from the outer wires would flow 
around the wires of the inner array. It turned out that highly collimated, high-Mach-number jets 
can be produced also by a relatively low-current X-pinch discharges [65, 66].  Sheared flows 
were produced and studied in Ref. 67.  In all these studies the scaling to real astrophysical 
objects was discussed.   
 Now we switch to the possible use of scaling analysis to the fusion plasma confinement 
in MagLIF-MTF systems. In magnetic confinement research there is a long history of using 
similarity criteria for the studies of the plasma behaviour,  Refs. 68-70. Recently a similarity 
analysis was done also in conjunction with the MagLIF plasma [10]. Here we discuss a 
simplified version of this scaling, assuming that the DT plasma is confined in an infinitely long 
cylinder. Then, one would be concerned with the radial plasma confinement against the cold 
walls. The plasma is immersed in an axial magnetic field and held together by a highly 
conducting walls at the radius a.  We consider an initial value problem. In other words, we 
assume that the cylinder is filled with a plasma of a certain temperature and density, permeated 
with a pre-imposed axial magnetic field. If this initial plasma is “set free” at t=0, it starts 
evolving, losing heat and redistributing density, temperature and the magnetic field to maintain 
the radial equilibrium.  
 We consider here the case where the plasma is sufficiently collisional, so that the plasma 
lifetime is much longer than the electron-ion temperature equilibration time (3). In this case, one 
can characterize the fully ionized, single ion species plasma (we take mi=2.5mp) by such 
parameters as temperature and particle density. These quantities, as well as the magnetic field.  
evolve according to collisional two-fluid equations [18]. These equations allow for the 
development of small-scale instabilities, in particular, drift-type instabilities of Sec. 7 and other 
instabilities that are described by the two-fluid equations. Applicability condition is that the 
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characteristic fluctuation time is significantly longer than the ion collision time. With that, 
anomalous transport discussed in Sec. 7 is covered by this similarity. The initial state is that of 
the mechanical equilibrium, so that the radial particle velocity is zero.  
 To find the invariance (similarity) properties, one can introduce dimensionless variables, 
measuring the density, temperature and the magnetic field in the units of their initial values on 
axis, normalizing the spatial scales to a, and temporal scales to the ion crossing time, tc=a/vTi. 
The dimensionless quantities then become: 

 n̂ = n
n0
; T̂ = T

T0
; B̂ = B

B0
; r̂ = r

a
; t̂ = t

tc
 .      (63) 

The electron and ion velocities that appear in the course of the temporal plasma evolution are 
normalized to a/tc. Note that the scale tc is just the normalization parameter, not the confinement 
time (which is much longer).   
 As shown in Ref. [10], if written in terms of these non-dimensional quantities, the 
Braginski equations are invariant between two plasmas, provided the following three 
dimensionless parameters are the same between the two systems: the ion magnetization (6), the 
plasma collisionality (2) with L=a, and the plasma beta (7), all evaluated for the initial 
parameters on axis. In other words, for a similar initial radial distributions, there are four  
dimensional input parameters, n0, T0, B0 and a that may vary between the two systems and there 
are three constraints on them: Mag=const, Col=const, β=const.  In other words, the system is not 
“stiff,” and one can consider similarly behaving systems of different radii. If one changes the 
radius and maintains the scaling parameters constant, the plasma parameters and the magnetic 
field in the initial state have to be adjusted accordingly (like in the Reynolds similarity: changing 
the scale L when keeping the Reynolds number constant, means that the fluid velocity u has to be 
changed as 1/L).  Note that in the plasma with Te=Ti the constancy of Mag and Col for the ions 
means the constancy of the same parameters for the electrons (see Eqs. (2, 6)); to be specific, we 
speak here about the ions. 
 To see what variations of the plasma parameters are allowed if the three scaling 
parameters are kept constant and the plasma radius a changes from one experiment to another, 
one has to solve three equations, Mag=const, Col=const, and β=const, for three quantities, n0, T0, 
B0, with a varying. In this way we find that 
 T0 ∝ a

−1/2  , n0 ∝ a
−2 , B0 ∝ a

−5/4 .        (64) 
Surprisingly, it may be easier to imitate the millimetre-scale MagLIF targets by larger scale, 
lower density and magnetic field plasmas that would be easier to diagnose.  
 The initial-value problem formulated above is not quite the same as that of the evolution 
of a continuously PdV-heated target in the MTF approach. Introducing the continuous heating 
destroys the similarity – the system becomes “stiff.” On the other hand, as suggested in Ref. 9, 
the decay of an initially-created plasma allows one to get an idea of the plasma life-time at given 
initial parameters. To be compatible with the pdV heating, this life-time has to be longer than the 
heating time at a given stage of the implosion. Therefore, the decay experiments and their scaled 
versions would allow one to assess, in a piece-meal fashion, the feasibility of the whole 
implosion process.  
 As is typically the case in the plasma-scaling exercises, the inclusion of the radiation 
losses destroys the plasma similarity. Indeed, one can check (see Ref. 10) that scaling of the 
radiation terms would introduce one more similarity constraint (the fourth) thereby making the 
system “stiff” (the scaled system must be identical to the original one).  
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9. ENERGETIC PARTICLES AND BEAMS 
 
 This subject falls out of the general area of collisional plasma physics covered by this 
review, so we will provide only very short summary with a few references.  
 The formation of particle beams seems to be a natural process in the Z-pinch geometry 
due to a possibility of the current break-up in the course of development of a sausage instability. 
The rapid development of the “neck” causes formation of high electric fields in the direction of 
the pinch current. On the axis, the magnetic field is zero, and the electrons can be freely 
accelerated towards the anode, provided the electric field exceeds the runaway limit [71], at least 
for the higher-energy tail. If the disruption occurs in a non-symmetric way, of importance is the 
length of the field line segments over which an integral E|| dl∫  has significant value. After 
having been accelerated in this zone, the electrons can travel further along the magnetic field 
lines and away from the disruption area. Their general direction would be towards the anode. 
Similar mechanism can work for the ions: the ions accelerated to high energies in the 
constriction can become weakly collisional and propagate to the cathode. Due to the much larger 
ion mass, the ions do not necessarily follow the magnetic field lines and their trajectories in the 
constriction area may be quite complex (M. Haines, Ref. 72).  
 Deutsch and Kies (Ref. 73) considered ion acceleration resulting from the multiple ion 
reflections from the cylindrical “mirror” collapsing on axis. The “mirror” is a model of a steeply 
increasing magnetic field. If the plasma in front of a “mirror” is not too dense, the ions do not 
scatter between the two successive reflections, and a kind of an ion runaway occurs. In this case, 
there is no strong anode-cathode asymmetry of the ion distribution. Trubnikov considered the ion 
acceleration by their “squishing” out of the rapidly narrowing “neck” (Ref. 74). Recent analyses 
of the formation of the ion tails in the pinch constriction, as well as a summary of experimental 
results is presented in a comprehensive review by Vikhrev and Korolev (Ref. 75). A progress in 
increasing the number of fast deuterons for the neutron production in Z pinches has been 
reported by D. Klir et al. [76]. Interestingly, the generation of fast particles was observed also in 
laboratory astrophysics experiments [77], where the protons with the energies significantly 
exceeding the applied voltage were detected in the geometry of magnetic tower jets.  
 Yet another mechanism of the fast ion generation may be related to the particle 
acceleration by microturbulence. The latter would naturally develop when the velocity of the 
current-carrying electrons in the constriction exceeds the threshold for the current-driven 
electrostatic instability. This would be an ion-acoustic or Buneman-like instability, depending on 
the electron-to-ion temperature ratio. The microturbulence develops at the scale of a few Debye 
radii and has frequencies of order of the ion plasma frequency. In the plasmas of Z-pinches, with 
the constriction densities in the range of 1019-1020 cm-3 electrostatic turbulence can lead to rapid 
acceleration of the “tail” ions initially having energy of a few ion temperatures. The maximum 
attainable energy  would be limited by the size of the ion gyro-orbits in the magnetic fields near 
the current “neck.”  Ion acceleration by the microturbulence favours the direction in which the 
ion acoustic waves are propagating (in the direction of the electron flow), i.e., towards anode.  
 A combination of these effects may give rise to a very dynamic picture of the energetic 
particles in the form of the mixture of the particle beams and quasi-isotropic “tail” particles. A 
lot of experimental information regarding the fast particle generation has been obtained in the 
studies of plasma foci, where the acceleration may occur in multiple points, after the current 
break-up to many filaments, merging and disrupting in an intricate “dance” [9].  
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 In recent years, advanced computing capabilities have allowed to self-consistently assess 
aforementioned mechanisms [78], except, possibly, the one related to the current-driven 
electrostatic microturbulence [2].  
 A topic somewhat related to the behaviour of fast particles is that of the dynamics of 
fusion alpha-particles that would be generated in the MagLIF-MTF plasmas [40, 41]. If the 
imploding liner impresses asymmetries on the field inside it, their dynamics may become quite 
complex. The dominance of the axial field makes the dynamics of alpha particles in this system 
more predictable than the fast particle behaviour in the systems with current disruptions.   
 
10. CONCLUSIONS 
 
 This tutorial focuses on those issues of the plasma physics  that are particularly important 
in the Z-pinch environment. Although the basic plasma properties for most of the regimes typical 
of the Z pinches are well known, the application of the existing plasma models to highly-
dynamical plasmas of Z pinches requires a thoughtful use of these models. This paper may help 
researcher to identify the parameter domain in which particular effects or particular models 
would play a dominant role. The use of dimensionless parameters characterizing the relative 
strength of various effects can be of a significant help in this regard. Table 4 summarizes a few 
most important parameters used throughout this article.  
 The resistive MHD covers a lot of situations involving a relatively cold plasmas of the 
imploding liners. This reduced way of description may also be helpful in simulating large-scale 
astrophysical phenomena occurring in collisional plasmas. MHD turbulence in a collisional 
plasma can also be described by the single-fluid MHD. There are situations (mostly in dense, 
nearly non-ideal plasmas) where MHD reconnections are governed by the nonlinear tearing 
instabilities described by the resistive single-fluid MHD. Constraints for the single-fluid MHD 
come usually from the need to account for the Hall effect that becomes important at higher 
currents and lower plasma densities (high relative velocities of the electrons and ions).  
 The two-fluid description is needed to account for the Nernst effect and to assess 
transport properties in relatively slowly evolving plasmas, like the magnetized target fusion 
plasma held in a quasi-equilibrium state by the liner walls. In this confinement problem one 
encounters a situation where the plasma magnetization changes from very high values near the 
axis to very low values in a cold dense plasmas near the walls, thereby involving quite different 
transport models. The highly magnetized zone may be subject to drift-type instabilities and 
enhanced transport, but the instability shows up in a collisional version and leads to transport 
coefficients below the reference Bohm value. Interestingly, there exists a broad similarity 
covering the two-fluid description for the case where the electron and ion temperatures are equal 
(i.e., for the processes occurring at the time-scale longer than the electron-ion equilibration time). 
 In the situation where the current path is disrupted by the development of the larger-scale 
instabilities, one can encounter the situations where suprathermal particles are formed, either in 
the form of the beams or quasi-isotropic “tails” of the particle distribution. These effects are 
particularly prominent in the plasma focus settings. Likewise, the magnetic reconnections in an 
ideal   plasma may manifest   transition   to   smaller and   smaller   scales, down  to collisionless  
anomalous phenomena. This interesting and important phenomenon is, however, only barely 
touched upon in this tutorial focused mostly on collisional systems. 



 27 

  Generally, the physics of Z-pinch plasmas is a rich and rapidly advancing area of plasma 
physics; given its fundamental value and numerous applications, it certainly deserves more 
attention of a broader plasma physics community. 
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Table 4 Main dimensionless parameters 
 

Notation, 
Eq. number 

Name and verbal definition Significance 

Col  
Eq. (2) 

Collisionality  
The ratio of the spatial scale 
and the particle m.f.p. 

Most important for the parallel (with respect to magnetic 
field) plasma dynamics; for large collisionality the electron 
heat transport is diffusive; the Maxwellian ion “tails” are 
not depleted by fast parallel losses. Due to the Z4 
dependence of the i-i collision cross-section, the 
collisionality can be much higher for the ions than for the 
electrons. The parameter Col is also related to the ratio of 
the plasma evolution time and the particle collision time. 

Mage,i 
Eq. (5) 

Magnetization 
The ratio of the gyrofrequency 
to the collision frequency 
(equal to the ratio of the m.f.p. 
to the gyroradius) 

If large, means that in every scattering event the particle 
shifts across a magnetic field by roughly a gyro-radius. At 
equal electron and ion temperatures is higher for the 
elctrons than for ions. Affects cross-field transport and 
magneto-thermal effects. 

β 
Eq. (7) 

Plasma “beta” 
The ratio of the plasma 
pressure to the magnetic 
pressure 

Large beta signifies that the magnetic field does not have 
significant effect on the gross dynamics of the plasma, 
although may still be important for the plasma transport if 
the magnetization Mage,i is high. Is approximately equal to 
the square of the ratio of the sound speed and the Alfven 
velocity. 

Ha 
Eq. (14) 

Hall parameter  
The ratio of the “current” 
velocity (e vs. i) to the flow 
velocity 

If large, means that the magnetic field is advected with 
velocity different from that of the hydrodynamic flow; at 
large Ha, the system is prone to development of the smaller-
scale instabilities. 

Ne 
Eq. (20) 

Nernst Parameter 
The ratio of the magnetic field 
evolutionary time to the 
thermal advection 

For large Ne, the presence of the thermal advection of the 
magnetic field may dominate resistive diffusion and 
nydrodynamic advection. In the plasma with Mage<1 the 
advection is directed towards the areas of lower electron 
temperature 

M  
Eq. (25) 

Mach number 
The ratio of the flow velocity 
to the sound speed 

High Mach numbers usually mean that strong shocks, 
collisional or collisionless, can be present in the system.  

Re 
Eq. (28) 

Reynolds number 
The ratio of the viscous time 
and the convective time 

Large Re means that ideal hydrodynamics is applicable for a 
large range of scales, from the global scales to the 
dissipative scales (but not the dissipative scales 
themselves). 

ReM  
Eq. (26) 

Magnetic Reynolds number 
The ratio of the resistive 
diffusion time and the 
convective time 

Large ReM means that the magnetic field is frozen into the 
plasma to a high accuracy; the line-tying breaks down only 
at small scales (the smaller, the higher ReM). Sometimes, a 
so called Lundquist number is used (instead or in parallel 
with ReM), where the convective velocity is replaced by the 
Alfven velocity. 

Pr 
Eq. (31) 

Magnetic Prandtl number 
The ratio ReM/Re 

This number is important in the studies of a turbulent 
magnetic dynamo. 
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Appendix. Useful numerical relations for the DT plasma (Z=1, A=2.5) 
 
Electron density in an equi-component DT plasma:   
 
       (A1) 
 
Plasma beta: 
 

    (A2) 

 
Conversely, 
 

       (A3) 

 
The ion gyro-radius: 
 

    (A4) 

 
The electron gyro-radius: 
 

    (A5) 

 
The ion mean-free path (equal to the electron mean-free path in a Z=1 plasma) 
 

     (A6) 

 
The ion magnetization parameter: 
 

    (A7) 

 
The magnetic diffusivity (in this equation we retain the Z-dependence): 
 

        (A8) 

 

    

€ 

n(cm−3) = 2.4 ⋅1020ρ(mg /cm3)

    

€ 

β = 8 ⋅10−20 n(cm−3)T (keV )
B2(MG)

≈ 20 ρ(mg /cm3)T (keV )
B2(MG)

    

€ 

B(MG) = 4.4 ρ(mg /cm3)T (keV )
β

    

€ 

ρi(cm) ≈ 7.6 ⋅10−3 T (keV )
B(MG)

≈1.7 ⋅10−3 β
ρ(mg /cm3)

    

€ 

ρe(cm) ≈1.1⋅10−4 T (keV )
B(MG)

≈ 2.8 ⋅10−5 β
ρ(mg /cm3)

    

€ 

λi(cm) = 3.3 ⋅1018 T 2(keV )
n(cm−3)

=1.4 ⋅10−2 T 2(keV )
ρ(mg /cm3)

    

€ 

λi

ρi
= 4.3 ⋅1020 T 3 /2(keV )B(MG)

n(cm−3)
= 8.2 T 2(keV ) β

ρ(mg /cm3)

    

€ 

DM (cm2 /s) ≈ 4 ×106 Z
[T (eV )]3 /2
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We consider a plasma with Te=Ti=T, ne=ni=n, so that the energy per unit volume is 3neT; 
accordingly, the electron and ion thermal diffusivities that enter equation ∂T /∂t = χe + χ i( )∇2T  
are related to the thermal conductivities κe  and κ i  presented in Ref. [18] as χe,i =κe,i / 3n .  
 
Parallel electron and ion thermal diffusivities: 

 ;   (A9) 

 
Perpendicular electron and ion thermal diffusivities: 
 

      (A10) 

      (A11) 

 
Bohm diffusivity : 
 

        (A12) 

 
Alpha-particle slowing-down time on the elwcreons: 

        (A13) 

 
  

    

€ 

χ||e(cm2 /s) = 6.5×1019 T 5 /2(eV )
n(cm−3)     

€ 

χ||i(cm2 /s) =1.7 ×1018 T 5 /2(eV )
n(cm−3)

    

€ 

χ⊥i(cm2 /s) = 5.1×10−15 n(cm−3)
B2(MG) T (eV )

    

€ 

χ⊥e(cm2 /s) = 2.52 ×10−16 n(cm−3)
B2(MG) T (eV )

    

€ 

χBohm ≡ (1/16)(cT /eB)

    

€ 

χBohm(cm2 /s) ≈ 6.2 T (eV )
B(MG)

    

€ 

τα (ns) ≈1021 T (keV )[ ]3 /2

n(cm−3)
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          b)                        c)  

    
  
 
Fig. 1 The geometry of typical Z-pinch configurations: a) Imploding thin-wall liner; the current 
flows along the axis and creates an azimuthal magnetic field; the j×B force pushes the liner 
inward, causing its eventual on-axis collapse; if the liner in the initial state is filled with a pre-
formed plasma, it may heat and compress it on axis; to ensure a good thermal insulation of the 
liner from the walls, an axial magnetic field can be imposed. Instead of a continuous liner, one 
can use a set of many thin wires stretched along the axis. b) Plasma focus (courtesy L Soto et al, 
Brazilian J. Phys., 34, 1814, 2004); the plasma shell passes the stages from I to IV and then 
implodes on axis; the azimuthal magnetic field pushes the shell from below in the direction 
normal to the shell.  c) X-pinch (courtesy A. Shelkovenko et al, IEEE Transactions on Plasma 
Science, 42, 748, 2014);  very high current densities can be achieved in the crossing point of two 
wires at a modest value of the total current. 
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Fig. 2 Characterization of particle collisions:  Blue lines represent the constant values of mean-
free-paths on the (ne, T) plane. For the lowest curve the value of the parameters for the 

electrons and  for the ions, is 10-8 cm. For every next blue curve this number increases by a 
factor of 10, reaching 1 cm for the upper-most curve. Green  lines represent the lines of constant 
e-i energy-exchange time (Eq. (4)). The lowest green curve corresponds to the value of the 
parameter =10-4. For every next curve it increases by a factor of 10, reaching 
1000 at the uppermost green curve. Red points roughly correspond to the initial and final 
parameters of the core DT plasma in MagLIF (Z=1, A=2.5); the system evolves along a dashed 
line; mean-free path stays below 10 µm. Equilibration time remains less than 1ns during the 
whole implosion process. The magenta, brown and light-blue points correspond to the plasma 
parameters in the lines 3, 4 and 5 in Table 1, respectively. When evaluating the mean-free paths 
and equilibration times for these plasmas mind the presence on the A- and Z-dependent factors in 
the corresponding expressions. E.g., when evaluating an equilibration time for the brown dot (a 
carbon plasma), multiply 1 ns by a factor of Z/A=2.  
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Fig.3. Plasma magnetization. Solid lines describe electrons, dashed lines describe ions. The lines 
correspond to a constant value of the parameter ZMage for the electrons (solid lines) and 
Z 2 AMagi for the ions (dashed lines). At the lowest line for the electrons ZMage =10-2, for each 
next line this parameter increases by a factor of 10, ending  at 104 for the upper-most electron line.  
For the lowest ion line we also have Z 2 AMagi =10-4, with a factor of 10 increase to every next 
line. To find magnetization for some values of T and ne, one has to choose the line nearest to the 
corresponding point on the (ne, T) plane; then, substituting information regarding the ion species 
one finds the magnetizations Mage,i for the corresponding point.  If the electron and ion 
temperatures are different, one has to use an appropriate temperature for each plot.  
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Fig. 4 Parameter β (Eq. (7)). The lines correspond to the constant values of the parameter  
βZ / (Z +1) . For the lowest line βZ / (Z +1)=0.001, for each next line this parameter increases by 
a factor of 10, ending up at 100 for the upper-most line.  The core plasma in the initial state of the 
MagLIF experiment is shown by the upper red dot, the arrow shows an evolution to the final state. 
Other dots correspond to the lower three lines in Table 1: magenta to line 3, brown to line 4 and 
light blue to line 5.  
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Fig.5. Characterization of the Hall effect in the (ne, L) plane.  The lines correspond to constant 
values of parameter . The  lowest line corresponds to =1000, for every 
higher line it decreases by a factor of 10, ending  with 10-3  for the upper-most line. The parameter 
L is a cross-field length scale of the magnetic field variation. Identifying L with the hot plasma 
radius in the MagLIF concept, and taking the corresponding numbers from lines 1 and 2 of Table 
1, we find that the Hall number Ha remains below 10-2 during the whole implosion. In other 
words, the Hall MHD is not affecting the core plasma behaviour in MagLIF. In some 
astrophysics-related experiments, the Hall effect can be substantial:  for the light-blue dot (line 5 
in Table 1) the Hall number is ~ 2.  
  

Ha Z / A Ha Z / A
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Fig. 6 The Magnetic Reynolds number ReM  in the (T, L) plane (L is in microns). The lines 
correspond to constant values of the parameter ReM Z +1 /MZ A . The lowest line 
corresponds to ReM Z +1 /MZ A =0.01; for each next line it increases by a factor of 10, with 
the upper line corresponding to 106. The red dots correspond to the initial and final states of the 
MagLIF experiment. Mind the presence of the Mach number M in the parametrization of the 
lines. The magenta, brown and light-blue dots correspond to the 3rd , 4th and 5th  lines in Table 1.  
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Fig. 7. Magnetic reconnection in two flux tubes. At the left, two flux tubes with an axial magnetic 
field frozen into each of them are separated by some distance in the direction normal to the figure. 
They are held in a radial equilibrium by an excess of the thermal pressure outside the flux tubes (a 
situation that may take place in the solar convective zone). When a slow motion of an external 
medium brings them close to each other, reconnection may occur near the intersection point; this 
leads to a release of not only the magnetic energy in the reconnection zone, but also the energy 
related to the straightening of the flux tubes (the motion indicated by green arrows). 
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Fig. 8 Transport coefficients for the reference case (Eq. (40)), in cm2/s. Blue solid line: 
magnetized ion thermal diffusivity (Ref. 18, Eq. 2.16; Eq. A10) blue dashed line: parallel (un-
magnetized) ion thermal diffusivity (Ref. 18, Eq. 2.15, Eq. A9); green solid line: magnetized 
electron thermal diffusivity (Ref. 18, Eq. 2.13, Eq. A11); red line: total cross-field diffusivity; 
black line: Bohm diffusivity. For the reference case (Eq. 40), the Bohm diffusivity becomes 
higher than the classical diffusivity at C=10.  
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Fig. 9. Dimensionless factors Cond (Eq. 50, red line); ReM (Eq. 51, light blue), Ac (Eq. 53, 
magenta), and Rad (Eq. 55, brown) characterizing the quality of the plasma confinement. For 
reference, we present also the Cond plots for χ⊥ = χBohm (solid black) and χ⊥ =10χBohm  (dashed 
black). For the latter case, the anomalous heat conduction starts effecting plasma confinement by 
the end of implosion. 
 
 

 


